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ABSTRACT

A triangle based TVD (total variation diminishing) scheme for the numerical approxima-

tion of hyperbolic conservation laws in two space dimensions is constructed. The novelty of

the scheme lies in the nature of the preprocessing of the cell averaged data, which is accom-

plished via a nearest neighbor linear interpolation followed by a slope limiting procedure.

Two such limiting procedures are suggested. The resulting method is considerably more

simple than other triangle based non-oscillatory approximations which, like this scheme, ap-

proximate the flux up to second order accuracy. Numerical results for linear advection and

Burgers' equation are presented.
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1. Introduction

In the last ten years there has been considerable effort aimed at constructing

and analyzing high order accurate, non-oscillatory approximations to hyperbolic

conservation laws (see e.g., [2], [8]). It is by now well established that the spon-

taneous development of shock waves and the appearance of steep gradients in the

solution require higher order schemes to have an adaptive stencil (by adaptive stencil

we mean an adaptive flux approximation, not an adaptive grid) in order to suppress

the spurious oscillations that plague conventional finite difference methods. Total

variation diminishing (TVD) schemes, one such class of second order accurate meth-

ods that eliminate unphysical oscillations, have been used successfully in a variety

of applications. Recently, a new class of methods, essentially non-oscillatory (ENO)

schemes ([3], [4]), which surpass the second order accurate barrier associated with

TVD schemes, has been developed. An alternative approach for third order schemes

was developed in [10].

Extensions of TVD and ENO schemes to two and three dimensions are typically

accomplished in a dimension by dimension fashion, via space-operator splitting.

Therefore, the extension of these higher order schemes to the solution of hyperbolic

conservation laws on unstructured grids, such as a triangular mesh, is not imme-

diate. It is our intent in this paper to devise a second order accurate scheme of

TVD type which is applicable to an unstructured triangular grid. Our scheme is

based on a finite volume type discretization and is particularly straightforward to

implement. The scheme relies on a very local adaptive interpolation idea, which

results in computational efficiency. In the future, we expect to extend the adaptive

two dimensional interpolation ideas presented here to develop triangle based, higher

order ENO schemes.

Several approaches for the solution of hyperbolic conservation laws on trian-

gular grids already exist. These techniques are, however, in the context of finite

element methods and have utilized flux corrected transport (FCT) ideas [6] or have

required the generation of a complex auxiliary grid [9] or are truly finite element
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methods in space and time and thus are more costly computationally [5]. The

methodology presented here is, in our opinion, simpler and more efficient, primarily

because a finite volume rather than a finite element approach is used, thus avoiding

the overhead associated with finite element schemes.

The TVD, second order accurate methods we shall develop in §2 are technically

neither total variation diminishing nor strictly second order accurate. We follow the

convention of calling two dimensional schemes TVD if they are formal extensions

of one dimensional TVD schemes, as our scheme is. In general, however, the total

variation may increase [1], though a maximum principle is satisfied. Also, although

the fluxes are approximated up to second order, the truncation error is technically

lower because of the adaptive stencil and the variable size of the triangles. Numerical

experiments presented in §3 indicate orders of accuracy between 1.6 and 1.9 in the

L1 norm. In §4 we suggest further extensions of the method within the TVD context

and indicate partiM extensions to include diffusive terms.

2. Construction of the Numerical Schemes

Our intent in this section is to develop a scheme to solve hyperbolic conserva-

tion laws on triangular grids in two space dimensions. The method presented is for

single hyperbolic conservation laws, though hyperbolic systems can be treated anal-

ogously in a field by field manner. Our method is finite volume based and achieves

greater than first order accuracy through use of a novel adaptive flux interpolation

procedure. We first present the general finite volume approach, then introduce our

general limiting procedure, and then discuss various specific limiters.

2.1 Finite Volume Discretization

Consider the hyperbolic conservation law,

+ v. F(u) = g(x,t),
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u(x, 0) = u0(x), (2.1)

subject to boundary conditions. We wish to solve (2.1) on a triangular grid, a

portion of which is shown schematically in Fig. 1. Integrating (2.1) over a triangle

(AABC to be specific) gives,

= - iV. (2.2)
ABC ABC

where AABC represents both the region ABC and its area, and g(x,t) has been

taken to be zero for simplicityof exposition only. Applying the divergence theorem

to the right hand side of (2.2)and defining,

u=(/a udA)(AAUC)-',
ABc

i.e., fi is the average of u over AABC, gives,

0 1 [_ F.nABd_+_ F.nAcd_,OtU -- Z_ABC AB aC

+_BcF'nBcd_] " (2.3)

Note that fi is equal to the value of u evaluated at the triangle centroid (XABC)

to within O(AAUC), or, analogously, to within O(_), where g is the characteristic

length of a side of AABC. Here n is the unit outward normal.

We approximate (2.3) by first using a semi-discrete approach where the ap-

proximation is

,,ABc(t) uAuc(t);

the same is true for all triangles. First order accurate monotone schemes can eas-

ily be constructed - see e.g., [7], [14]. Let huc(wl,w2) be a two-point Lipschitz

continuous monotone flux, approximating F. nBc, i.e.,

(2.4a) hue(w, w) = F. nuc,

(2.4b) huG(w1, w2) is a nondecreasing function of w, and a nonincreasing func-

tion of w_.
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Then our semidiscrete monotone approximation is,

_VABC(t) = 1 [AABC hBC(VABC, VBCD)" eBC

i _A.(vA.c,_.,.) e.,.

+ hAC(VABC, rACE)" gACJ,

where gBC is the length of the side BC, etc.

[7] for the definition and for examples.

(2.5)

"E" schemes may also be used - see

To obtain higher order accuracy we preprocess our initial data so that in each

triangle, in particular AABC, a linear function is obtained whose cell average equals
...... : ........ - =

VABC, but which is within O(A) of UABC in regions of smoothness. Here A is the

maximum area of the four triangles seen in Fig. 1. Moreover, this linear function

will not introduce new oscillations in our approximation. This (simple) construction

is the key part of this paper; it will be described at the end of this section. We call

this linear approximation LA (x). It is generally discontinuous across the boundary

of each triangle.

Let XBC be the midpoint of side BC, etc. Let L_(x_c ) denote the limit of

LA(x) as x _ Xuc from inside triangle ABC and LA(X_c ) denote the limit as

x --+ XBC from outside triangle ABC. Generally,

IL_(X_c)-L_(X_c)I= o(_).

Our TVD, second order accurate, semi-discrete approximation to (2.3) is

+ hA.(LA(x'_.), LA(x_.)). e_. (2.6)

, ]+ hAC(LA(XAC), LA(X_4c))'gAC •

By the midpoint formula for integrals, this approximation is weakly second order

accurate, in the sense that each of the three flux terms above is within O(A) of

4



the line integrals, f F • nd£, along the corresponding interfaces. However due to

the shifting stencil and varying size and relation of the triangles, the pointwise

truncation error is generally only O(A§), i.e., first order. The performance appears

to be around 1.6-1.9 order in Li for smooth flow (see §3).

_._ Construction of Linear Function L_

We now describe the construction of LA. In each interior triangle, three can-

didates for LA, designated Lk, are generated. The first such candidate LIA, is the

linear interpolate of the three values

(XABC,VABC), (XBCD,VBCD), (XACE,VACE),

L2A is the interpolation of

(XABC,VABC), (XBCD, VBCD), (XABF,VABF),

and LaA the interpolation of

(XABC,VABC), (XACE, VACE), (XABF,VABF) •

These three linear interpolants are sketched in Fig. 2. Here and below we assume

that the three triangle centroids, XABC, XBCD and XABF are not colinear. At this

point, three possible L_ exist, and a limited version of LA must be selected from

these. To accomplish this, we first compute the magnitude of the gradient of each

L'_; i.e.,

0 _ 2 0 Li 2"} (2.7)
[(_-xl LA) +(_2x2 h)] =IVL_xl, for i=1,2,3.

By analogy with limiting procedures in one space dimension ([13]), a valid, though

very non-compressive limiter, corresponds to the selection of the L_x for which IVL_x]

is the minimum. This choice is analogous to the min limiter in second order ENO

methods ([3]); no special precautions need be taken at extrema.
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It is desirable to construct a more compressivelimiter than that described

above, particularly for problems involving linear or contact discontinuities. To ac-

complish this, wefirst considerthe morecompressiveslopelimiters in onedimension,

the _ type-l[mlters describedby Sweby[i3] (his equation 3.17) of which superbee

is the most compressive,corresponding to _ = 2. These limiters allow the useof

piecewiselinear approximations to the solution for which the slopeis not the min-

imum, subject to the restriction that no overshoot (or undershoot) occurs at the
cell boundaries.

The next limiter wedescribeis a multidimension analog of the onedimensional

limiters. The approach here is to select the L_ for which IVLkl is maximized,

subject to the restriction that no overshoot or undershoot occurs at any of the three

triangle boundaries. The procedure is as follows:

(i) Select the L/A for which ]VLiA[ is the maximum.

(ii) Check for overshoot or undershoot at xAO, XAC and xuc. For LiA to represent

a valid Lzx, it suffices to verify that, for AABC,

L,_(XAC) is between VABC and rACE,

LA(XAU) is between vABC and VABF and

L_(xBc) is between VABC and rUeD.

If these three requirements are satisfied, L_x is the appropriate Lzx.

(iii) If the L_x above results in overshoot or undershoot at any one of the three

midpoints, select the L_ for which IVL I is the second largest and repeat the

test in (ii). If this L/zx does not satisfy the test in (ii), select the Lizx for which

IVL I is the minimum and again proceed through the test in (ii).

(iv) If all L_x fail (ii), revert to a piecewise constant approximation for AAUC; i.e.,

LA = VABC.

= __

Given Lex, the right hand side of (2.6) can be evaluated and vauc(t) integrated

in time. This time integration is accomplished via a second order TVD Runge-Kutta

procedure [11].



3. Numerical Verification of Higher Order Scheme

In this section we present results for the convergence of the general method

described in §2, as well as solution contours and profiles demonstrating the accuracy

of the method. In all cases, the solution region is a square domain discretized via

right triangular 'volumes' (referred to as elements), as shown in Fig. 3. Periodic

boundary conditions are imposed in both the x- and the y- directions; the initial

condition is similarly x- and y- periodic. In all cases the more compressive limiter

described in §2.2 is used for the TVD scheme.

3.1 Rate of Convergence

To assess rate of convergence, the scheme is applied to the solution of the linear

conservation law

u, + V-(an) = 0, (3.1)

subject to the initial condition

uo(x, y) = sin(2rrx) sin(2rry). (3.2)

Our base monotone scheme uses the EO flux [7]:

h(wl,w2) = f+(wl) -k f-(w2).

For linear equations with constant a = (a_, ay),

f+(u) = [max((a. n), 0)]u,

f_(u) = [min((a. n),0)]u.

For Burgers' equation (considered below), where fl = f2 = (1/2)u 2,

f+(u) = max(( n_ + ny)u2,0),
2

f_(u) = min(( n_ + n_2 )u2'0)'

7
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where nx and n v represent the components of n.

A contour pi0t of the initial Condition (3.2) is shown in Fig. 4. Four extrema

are evident. The rate of convergence of the method was determined for both the

case ax -- ay -- 1 and a, -- 1, ay -- 0. Further, convergence was assessed both On

an element by element basis and after applying a:local averaging procedure. It is

expected that local averag]ng procedures would enhance the rate 0fconvergence, as

the scheme is expected to be second order in only the weak sense; i.e., after integrat-

ing locally in space and time (a type of local averaging): The averaging performed

in this study is, however, only spatial; no temporal averaging is attempted. This

is because spatial-temporal averages are rather cumbersome to perform in practice,

and the spatial averaging alone reveals the expected trend. Computations were

performed for grids ranging in discretization from 200 elements (g = 0.1, where g

is the spacing between adjacent nodes or, analogously, _ = (2A)1/2, with A the

area of any element) to 12800 elements (g = 0.0125). In all cases the CFL number,

A(= At�g), was set to 0.1.

Displayed in Fig. 5 is a log-log plot of L1 error versus g. In this case, a, -- ay =

1. Results are shown for both a first order scheme and the higher order scheme,

with error computed on an element by element basis. Least squares linear fits give

the order of convergence for the two methods; for the first order method we obtain

0.93 and for the higher order method 1.77. Figure 6 displays an analogous plot

after applying a local averaging procedure. Specifically, this averaging procedure

entails averaging the computed value of u over square regions comprised of two

adjacent elements and computing the error in terms of the difference between this

average and the exact solution of Eq. (3.1) evaluated at the square midpoint. For

the grid displayed in Fig. 3, 100 such square regions exist. Again, averaging is

only applied spatially; no temporal averaging is performed. Assessing error in this

manner results in least squares linear fits of slope 0.94 for the first order method and

1.81 for the higher order method. As expected, local averaging enhances the rate

of convergence though, in this case, the improvement is minimal. In other cases,

however, the improvement is more substantial. For example, using ax -- 1, % -- 0

t

w
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in Eq. (3.1) yields the following convergence results. For the first order method,

convergence is 0(0.99) with no local averaging and O(1.06) with averaging. For the

higher order scheme, the convergence rates are O(1.60) and O(1.73), respectively.

Results for L2 and Loo error display slower rates of convergence. For the case

ax = ay = 1, L2 error is _ O(g TM) with local averaging and O(g L62) on an element

by element basis with L_ error -,_ O(g TM) with local averaging and O(g TM) with no

averaging. The expected result for L2 error is ,-_ O(g 15) and for Loo error _ O(g), as

in one dimensional TVD methods. Although the discrepancies between the expected

and numerical results are relatively slight, it is not clear why the L2 error converges

faster than expected while the Loo error converges slower than expected.

Shown in Table 1 is a compilation of the rates of convergence of L1, L2 and L_

error. Results for both a first order scheme and our more compressive TVD scheme

are displayed. In all cases the initial condition is as in (3.2). Error is computed

over the entire domain in two ways: (1) element by element and (2) by combining

two adjacent elements into squares. In all cases g ranges from 0.0125 to 0.1.

Slightly improved rates of convergence in L1 are obtained when the initial

condition contains no extrema. This is demonstrated in Table 2, where results

for L_ error for the initial condition uo(x,y) = sin(Trz/2)sin(ry/2) are displayed.

Here, to eliminate the effects of the discontinuity in u at the boundary (recall that

periodic boundary conditions are imposed), error is computed only over the region

0.6 < x, y _< 0.8 at an early time, t = 0.05. In one case, local averaging has a more

dramatic effect, improving the L1 accuracy of the TVD scheme from 1.22 to 1.80.

Based on the numerical results presented above and the analysis presented in

§2, we feel that the method can be considered to be second order accurate in La in

the weak sense. Though our convergence results always indicate convergence slower

than quadratic, this is, in our opinion, due to the fact that these results are not

strictly measuring weak convergence. If such convergence could be unambiguously
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measured, it is our contention that the method would indeed display second order

convergence.

3.2 Examples of Numerical Accuracy

We now present some detailed numerical results for our second order scheme

and compare these with the results of a first order method_ The first results are for

the solutionof Eqs. (3.1) and (3.2) Witi_ a; = a N = 1. Figure 7 displays the solution

contour results for the first order scheme with 800 elements (g = 0.05) and A = 0.1

(the same CFL number is Used in all computations) at t - i. The exact Soiution

is a reproduction of the initial Condltlon, shown in Fig. 4. The first order method

is clearly very diffusive; the maximum value of u is here only 0.25, in contrast to

the maximum in the initial condition of t. Results for the second order scheme

at t = 1 are shown in Fig. 8. Though some distortion of the initial Condition is

apparent, the solution is considerably improved over the first order solution; the

maximum value of u is now 0.76. Shown in Fig. 9 are the t = 1 results for the

first order scheme using3200 elements_:_:025): Substantial numerlcal diffusion

is still evident; the maximum value of u is only 0.49. The solution contour using

the second order method is displayed in Figl 10. The t = 1 solution in this case

closely resembles the initial condition, with a maximum value of u of 0.88. Figures

11 and 12 show solution profiles taken along the line y = x (the velocity direction)

at=?::_O:_ _0.25,_0.5,_0;% and 1 for both the first and second order methods. In

both cases, 3200 elements were used. The second order results are quite sharp at

all times, W}_ile the firsi order results showa continual degradation with increasing

time.

Solution profiles for computations using the second order method with a non-

linear flux function, I = (1/2) u2 in Eq. (2.1) (i.e., the inviseid Burgers' equation),

with the initial condition u0(x, y) = sin(2rrx), are shown in Fig. 13. Though this

is an essentially one dimensional problem, no overshoot or unphysical oscillations

appear in the solution. The solution is sharper with the second order method than
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with afirst order scheme(first order resultsarenot shown),though the improvement

is of courselessdramatic than in the linear examplespresentedabove.

4. Possible Extensions

4
Other limiting procedures are quite feasible and should be tested. Our com-

pressive limiter is not a direct analogue of superbee, since superbee (and many other

limiters [13]) occasionally allows values other than zero or any of the slopes being

compared to be the final choice of slope (or gradient in our two dimensional case).

A more significant issue is the treatment of diffusive terms. In this case, the

governing equation is of the form

u,+V.F(u)=e(u_+u_), _>0. (4.1)

The discrete analogue of (2.3) now involves the additional term,

( o. + .c oN +  ee), (4.2)

on the right side of (2.3). Up to first order accuracy, we compute each of the three

terms in (4.2) as follows. The limiting procedure has already given us a gradient

within the triangle ABC as well as for each of the three neighbors. Therefore, the

integral along side AB in (4.2) can be computed approximately as

-gAB (4.3)
[(VLABc +VLABF)" n] _ .

The integrals along the other sides are approximated analogously. This is generally

a first order accurate method (second order accuracy occurs in special cases; e.g., if

all the triangles are equilateral). However, since e is relatively small here (otherwise

transport is diffusion dominated and the sophisticated treatment of convection is

unnecessary), we believe this to be an adequate treatment of these terms.

Finally, we mention that work is underway to approximate (2.1) using a higher

order accurate ENO triangle based method. See [11], [12] for successful Cartesian

coordinate approaches.
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Table 1. Computed accuracy of TVD scheme for the linear case. Initial condition

uo(z, y) - sin(27rx) sin(27ry). Error computed over the entire domain.

az = ay = 1

Scheme Norm # elements n..n.._

2nd O L1 1 1.77

2nd O L1 2 1.81

2nd O L2 1 1.62

2nd O /,2 2 1.64

2nd O Loo 1 0.91

2nd 0 Loo 2 0.94

1st 0 L1 1 0.93

1st 0 L 1 2 0.94

1st O L2 1 0.94

1st O L2 2 0.94

1st O /5oo 1 0.95

1st O Loo 2 0.94

az = 1, a v = 0

Scheme Norm # elements n._n_.

2nd 0 L1 1 1.60

2nd O L1 2 1.73

1st 0 LI 1 0.99

1st O L1 2 1.06

=

P

l

7

m
iE

=
E
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Table 2. Computed accuracy (L1) of TVD scheme for the linear case. Initial

condition Uo(X, y) = sin(Trx/2) sin(Try/2) contains no extrema. Error computed

over 0.6 _< z, y < 0.8 at t = 0.05.

az --ay "-- 1

Scheme # elements n.n__

2nd 0 1 1.85

2nd O 2 1.87

az = O, a v = 1

Scheme # elements

2nd O 1 1.22

2nd 0 2 1.80

1st O 1 0.99

1st O 2 1.10
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Three candidates forthe linear interpolation
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Triangular grid used for the numerical calculations.
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Figure 4

Contour plot of the initial condition (3.2). Contours correspond

to u = O, _+0.15, _+0.3, + 0.45, _+0.6, + 0.75, + 0.9.
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Figure 5

L 1 error on a per element basis for the case ax = a y = 1 for

first order (0) and second order (x) schemes. Lines are

least square fits with slopes as indicated.
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Figure 6

L1 error after local averaging for the case ax = ay = 1 for
first order (0) and second order (:x) schemes. Lines are

least square fits with slopes as indicated.
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Figure 7_ _

Results for first order scheme with 800 elements at t = 1.

Contours correspond to u -- 0, _ 0.1, __+0.2.
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Figure 8

Results for second order scheme with 800 elements at t = 1.

Contours correspond to u = 0, _+0.15, _+0.3,_+0.45, _+0.6,
_+0.75.
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Figure 9

Results for first order scheme with 3200 elements at t = 1.

Contours correspond to u = 0, +_0.15, +_0.3,+_0.45.
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Results for second order scheme with 3200 elements at t =1.

Contours correspond to u = 0, ___0.15,_+0.3,_+0.45,+_0.6,___0.75.
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Solution profiles along the line y=x for the first order scheme

(3200 elements).
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Solution profiles for Burgers' equation using second order

scheme (800 elements).
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